Chance-constrained DEA models with random fuzzy inputs and outputs
نویسندگان
چکیده
Data Envelopment Analysis (DEA) is a widely used mathematical programming technique for comparing the inputs and outputs of a set of homogenous Decision Making Units (DMUs) by evaluating their relative efficiency. The conventional DEA methods assume deterministic and precise values for the input and output observations. However, the observed values of the input and output data in real-world problems can potentially be both random and fuzzy in nature. We introduce Random Fuzzy (Ra-Fu) variables in DEA where randomness and vagueness coexist in the same problem. In this paper, we propose three DEA models for measuring the radial efficiency of DMUs when the input and output data are Ra-Fu variables with Poisson, uniform and normal distributions. We then extend the formulation of the possibility–probability and the necessity–probability DEA models with Ra-Fu parameters for a production possibility set where the Ra-Fu inputs and outputs have normal distributions with fuzzy means and variances. We finally propose the general possibility–probability and necessity–probability DEA models with fuzzy thresholds. A set of numerical examples and a case study are presented to demonstrate the efficacy of the procedures and algorithms. 2013 Elsevier B.V. All rights reserved.
منابع مشابه
DATA ENVELOPMENT ANALYSIS WITH FUZZY RANDOM INPUTS AND OUTPUTS: A CHANCE-CONSTRAINED PROGRAMMING APPROACH
In this paper, we deal with fuzzy random variables for inputs andoutputs in Data Envelopment Analysis (DEA). These variables are considered as fuzzyrandom flat LR numbers with known distribution. The problem is to find a method forconverting the imprecise chance-constrained DEA model into a crisp one. This can bedone by first, defuzzification of imprecise probability by constructing a suitablem...
متن کاملA Chance-Constrained DEA model with random input and output data:Considering maintenance groups of Iranian Aluminum Company
In this paper, we use an input oriented chance-constrained DEA model withrandom inputs and outputs. A super-eciency model with chance constraintsis used for ranking. However, for convenience in calculations a non-linear deterministicequivalent model is obtained to solve the models. The non-linearmodel is converted into a model with quadratic constraints to solve the nonlineardeterministic model...
متن کاملA new approach based on alpha cuts for solving data envelopment analysis model with fuzzy stochastic inputs and outputs
Data Envelopment Analysis (DEA) is a widely used technique for measuring the relative efficiencies of homogenous Decision Making Units (DMUs) with multiple inputs and multiple outputs. These factors may be evaluated in fuzzy or stochastic environment. Hence, the classic structures of DEA model may be changed where in two fold fuzzy stochastic environment. For instances, linearity, feasibility a...
متن کاملA New Dynamic Random Fuzzy DEA Model to Predict Performance of Decision Making Units
Data envelopment analysis (DEA) is a methodology for measuring the relative efficiency of decision making units (DMUs) which ‎consume the same types of inputs and producing the same types of outputs. Believing that future planning and predicting the ‎efficiency are very important for DMUs, this paper first presents a new dynamic random fuzzy DEA model (DRF-DEA) with ‎common weights (using...
متن کاملGeneralized Fuzzy Inverse Data envelopment Analysis Models
Traditional DEA models do not deal with imprecise data and assume that the data for all inputs and outputs are known exactly. Inverse DEA models can be used to estimate inputs for a DMU when some or all outputs and efficiency level of this DMU are increased or preserved. this paper studies the inverse DEA for fuzzy data. This paper proposes generalized inverse DEA in fuzzy data envelopment anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowl.-Based Syst.
دوره 52 شماره
صفحات -
تاریخ انتشار 2013